Search
Filters
Close

Save 20% on select titles with code HIDDEN24 - Shop The Sale Now

03554 DISSIMILATORY METAL REDUCING BACTERIA IN BIOGEOCHEMISTRY AND CORROSION

Product Number: 51300-03554-SG
ISBN: 03554 2003 CP
Author: Richard A. Royer, Richard F. Unz, Brian A. Dempsey, and William D. Burgos
$0.00
$20.00
$20.00
Dissimilatory metal reducing bacteria (DMRB) have been recognized for their role in metal transformations in pristine and contaminated environments. These organisms can directly and indirectly reduce numerous minerals, toxic heavy metals, and radionuclides and may also alter the stability of important ferric oxide/hydroxide passive films, thereby, influencing corrosion cells. Direct biological reduction/dissolution of ferric iron-containing passive films may represent a mechanism of microbiologically influenced corrosion (MIC) that is unique to DMRB. The factors that influence mineral dissolution may therefore be important in understanding and minimizing this form of MIC. A thermodynamic evaluation of hematite bioreduction suggests that hematite films may not be as stable as predicted based upon accepted thermodynamic data. Known biogeochemical and environmental reactions are examined herein for their potential role in promoting or possibly preventing corrosion.
Dissimilatory metal reducing bacteria (DMRB) have been recognized for their role in metal transformations in pristine and contaminated environments. These organisms can directly and indirectly reduce numerous minerals, toxic heavy metals, and radionuclides and may also alter the stability of important ferric oxide/hydroxide passive films, thereby, influencing corrosion cells. Direct biological reduction/dissolution of ferric iron-containing passive films may represent a mechanism of microbiologically influenced corrosion (MIC) that is unique to DMRB. The factors that influence mineral dissolution may therefore be important in understanding and minimizing this form of MIC. A thermodynamic evaluation of hematite bioreduction suggests that hematite films may not be as stable as predicted based upon accepted thermodynamic data. Known biogeochemical and environmental reactions are examined herein for their potential role in promoting or possibly preventing corrosion.
PRICE BREAKS - The more you buy, the more you save
Quantity
1+
5+
Price
$20.00
$20.00
Product tags
Also Purchased
Picture for 97215 THE ROLE OF METAL-REDUCING BACTERIA
Available for download

97215 THE ROLE OF METAL-REDUCING BACTERIA IN MICROBIOLOGICALLY INFLUENCED CORROSION

Product Number: 51300-97215-SG
ISBN: 97215 1997 CP
Author: Brenda Little, Patricia Wagner, Kevin Hart, Richard Ray, Dennis Lavoie, Kenneth Nealson, Carmen Agui
$20.00
Picture for 08505 MIC of Steels by Iron Reducing Bacteria
Available for download

08505 MIC of Steels by Iron Reducing Bacteria

Product Number: 51300-08505-SG
ISBN: 08505 2008 CP
Author: H. Videla, S. Borgne, C. Panter, and R. Raman
Publication Date: 2008
$20.00
Picture for 96279 FIELD EXPERIENCES IN ON-LINE BACTERIA
Available for download

96279 FIELD EXPERIENCES IN ON-LINE BACTERIA MONITORING

Product Number: 51300-96279-SG
ISBN: 96279 1996 CP
Author: Todd G. Wright, John Smart, Tom Pickthall
$20.00