Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
A variety of systems can characterize the properties of final painted surfaces in production to optimize appearance. In order to properly control and improve the coating process, rapid, large-area 3D measurement capability is needed that can work at all stages, from initial raw substrates to the final clear coat. Recent research has identified the key spatial wavelengths of interest and worked to correlate various calculations of surface texture with subjective appearance of the coated surfaces.
A variety of systems can characterize the properties of final painted surfaces in production to optimize appearance. In order to properly control and improve the coating process, rapid, large-area 3D measurement capability is needed that can work at all stages, from initial raw substrates to the final clear coat. Recent research has identified the key spatial wavelengths of interest and worked to correlate various calculations of surface texture with subjective appearance of the coated surfaces. Being able to measure raw as well as coated surfaces with one system is especially important as more materials are used for a single vehicle: steel, aluminum, plastic, and composites. Rapid, complete characterization allows sufficient feedback into the process to identify problems before most value-add operations, while also still allowing simple pass/fail results to day-to-day inspection.Systems to perform these measurements were previously limited to the laboratory and took minutes to hours to measure enough surface area for statistically valid results. This paper will discuss the first hand-held, shop floor system that can rapidly measure almost any surface texture or material in-situ. This allows rapid process feedback and to improve quality and reduce costs. Various coated and uncoated samples will be measured and results presented. Additionally, the system’s repeatability and reproducibility across various materials and environments will be presented to prove its robustness and suitability for production process control.
Coating systems are critical in the mitigation of corrosion on pipelines and their integrated parts.Epoxies offer a multitude of positive characteristics including: high adhesion at a chemical level,excellent abrasion resistance, and reduced water permeation rates when compared to vinylesters. A newly engineered cold weather epoxy (“Epoxy-20F”) improves upon these epoxycharacteristics and exceeds that of vinyl esters.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Cementitious repair mortars are commonly used to rehabilitate deteriorated wastewater concrete infrastructure prior to the application of high-performance lining systems. These repair mortars occasionally receive a broom finish creating a “profiled” surface prior to the application of a trowel- or spray-applied protective lining system. Other recommendations require that that the cementitious mortars receive a blasted surface to impart a mechanical profile prior to topcoating with a similar lining system. In the following paper the author summarize the results of an investigation to quantitatively assess adhesion of a protective lining when applied to a broom finish surface verses a blasted surface.
The author will present on the various generic coatings technologies available for lining concrete and discuss the advantages and disadvantages of each one. Discussion will include epoxy, polyurethane and polyurea technologies. The goal of the presentation will be to provide some guidance to the attendees on when is the right application to select each technology as part of a specification.