Products tagged with 'o2 ingress'
View as
Sort by
Display
per page
Available for download
Product Number:
51324-20995-SG
Author:
Shrirang Deshmukh; Bruce Brown; David Young
Publication Date:
2024
$40.00
We're sorry, something went wrong.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Available for download
Product Number:
51324-20996-SG
Author:
Shrirang Deshmukh; Bruce Brown; David Young
Publication Date:
2024
$40.00
CO2 co-produced in brine with crude oil is the governing corrodent in upstream oil and gas systems. A potential additional corrosive species that can be introduced through ingress is O2. Consequently, strict guidelines exist within the oil and gas industry to limit O2 levels in production environments, emphasizing the significance of understanding any associated corrosion risks. These guidelines require O2 concentrations to be as low as 20 ppb, however, there is little to no experimental evidence to support this limit. The aim of the research described herein was to advance the understanding of how trace O2 concentrations can influence CO2 corrosion mechanisms of bare steel at the acidic pH of 4. Elucidating these underlying mechanisms would enable more effective corrosion prediction, thereby enabling development of effective mitigation strategies, as well as establishing validity of the aforementioned “20 ppb” guideline related to O2 ingress. To accomplish these goals, controlled experiments were performed to test aqueous O2 concentrations up to 100 ppb on pipeline steel in a CO2 saturated 1 wt% NaCl brine at 1 bar total pressure. Various electrochemical analytical techniques, including LPR, EIS, and potentiodynamic polarization measurements were employed. The research reported herein is foundational for characterizing the impact of oxygen in CO2 corrosion environments, an ongoing research activity. This will contribute to the development of more reliable and sustainable corrosion control practices for industries experiencing CO2 corrosion which can be extendable to carbon capture and transmission systems.
We're sorry, something went wrong.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.