Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
A new wrought alloy has been developed for use as furnace tubes in ethylene pyrolysis plants. This alloy has an excellent carburization resistance due to uniform formation of protective Al2O3 oxide scale on the metal surface. Laboratory corrosion tests have been carried out to evaluate carburization resistance of the developed alloy.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In the present study, detailed microstructure of the crack-tip region of a failed tube was examined using SEM, TEM and EBSD to clarify the relaxation crack mechanism. Details of the microstructural findings and a proposed mechanism of stress relief cracking will be discussed.
Asset owners, engineers, consultants, coating contractors, inspectors, and others are specifying allowable levels of surface soluble salts to prevent premature coating failures. The purpose of this standard is to provide guidance about the number of and locations for soluble salt tests on steel surfaces.
This standard establishes siting and frequency requirements for soluble salt testing before the application of a subsequent coating system to previously coated substrates and replacement substrate material. It does not include allowable limits of soluble salts, which are typically addressed by the procurement documents or the coating manufacturer’s documentation.