Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Intergranular Stress Corrosion Cracking (IG-SCC) plays an important role as one of the most recognized degradation phenomena in Nuclear Power Plants (NPP). SCC is both multi-disciplinary with many parameters that are dependent on each other. This study was based on developing a multi-physics finite element model for IG-SCC prediction in unirradiated structural materials for non-pressure vessel components in NPPs. The environment considered was boiling water reactor (BWR) with normal water chemistry (NWC), containing approx. 200ppb oxidant (O2 + H2O2) and varying aggressive ions Cl-. The model was focused on the slip-oxidation model, where a crack is advancing by anodic dissolution, passivation, and oxide rupture at the crack tip. The rupture of the oxide film is due to the constant stresses applied creating slips in the bulk material which fractures the oxide.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.