Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The crystallization of sparingly soluble salt in multiphase system, involving mixing between oil and water fractions, is one of the major challenges encountered by the petroleum industry. The kinetics of scale formation in the bulk of the fluid in the presence of the oil phase is very important and has received little attention. Most of the studies that focused on dealing with the challenges of scale formation in the oil and gas industry have been directed towards the understanding, predictions and treatment based on results from single phase brine solution.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The formation of mineral scale is an undesirable phenomenon which is as a result of the disturbances in thermodynamics and chemical equilibria of the water system. CaCO3 scale is one of the major flow challenges in the oil industry and the crystallization process starts from thermodynamically unstable hydrated form to anhydrous polymorphic stable forms1,2 The transformation involves a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy of the system where the crystallization of the dehydrated amorphous material lowers the enthalpy the most. There are two theories regarding the polymorphic transformation of a solid structure. The first suggests the transformation occurs through a direct solid transition in which the metastable phase exhibits a rearrangement of its molecules or atoms to a more stable form3. The second is valid in the presence of a solvent which allows the dissolution and the re-nucleation and growth of the stable phase4.