In the oil and gas industry, long-distance transportation of petroleum and related products is usually carried out in large-diameter carbon steel pipelines. Water present with the oil, along with corrosive species such as CO2, H2S and organic acids, causes severe corrosion of the inner pipe walls.1 An effective method of controlling corrosion is to continuously inject corrosion inhibitors into pipelines conveying oil-water mixtures. As corrosion occurs on water wetted metal surfaces, corrosion inhibitor (CI) molecules form protective films which retard electrochemical reaction rates at the water-metal interface,2 thereby protecting carbon steel pipes against CO2 ("sweet") corrosion and H2S ("sour") corrosion. Most commercial CIs are a complex mixture of several compounds that contain surfactant-type active ingredients, such as imidazoline, amine, phosphate ester, and quaternary ammonium derivatives.