Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Common materials employed in catalytic reforming unit tubes are typically resistant to carburization due to protective chromium oxide films, but under low excess oxygen conditions can become compromised and allow carbon penetration and carbide formation at the exposed surface. Embrittlement and material wastage as a result of these mechanisms causes premature failures, with production loss, in addition to shutdown maintenance and replacement costs. Carburization in this environment is simulated in this paper through a pack carburizing method designed to create an environment optimal for diffusing carbon in an ASTM 335 9Cr-1Mo tube material.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.