Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Aluminum, after iron is the second -most widespread metal used on earth. Unpainted aluminum forms a protective aluminum oxide layer over the pure aluminum metal alloy and, in most atmospheric environments, is resistant to corrosion deterioration. However, pure aluminum is virtually always alloyed with other metallic elements to enhance its properties, primarily to increase its strength, but also to improve its formability, weldability, machineability, electrical conductivity, and corrosion resistance.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In this work selected corrosion phenomena occurring in disc brake systems are reviewed. For the first time, a galvanic series, summarizing the electrochemical performance of several brake system components, is presented and case studies are discussed as well. The case studies focus on corrosion issues which are related with the three major components of a car disc brake system, namely the: a) Aluminum caliper; b) brake pads and associated friction materials; and c) cast iron disc. It is shown that: a) the parameters for the anodization of Aluminum calipers should be carefully tuned on the basis of the specific Al alloy, in order to obtain an anodic layer capable to withstand the galvanic coupling existing between the caliper and nobler components; b) friction materials composition must be optimized in order to avoid shear adhesion phenomena between brake pad and disc due to the growth of corrosion products at the interface between the two; and c) it is possible to mitigate the corrosion of cast iron brake discs by modulating the carbon morphology, alloy elements concentration and microstructure. The manuscript demonstrates that electrochemical techniques are of fundamental importance in order to pursue a corrosion-resistance-oriented design of future braking systems for automotive applications.