The control of multiphase flow corrosion in oil and gas industry is one of the biggest challenging tasks. Since the 1990s, several organizations have established and operated large-scale flow loops to simulate and reproduce the field service environment of oil and gas pipelines. Based on comparison and investigation of the above loops, a new and advanced system, including several four inches internal diameter loops for studying corrosion under multiphase flows, was successfully built by us. By using this system, multiphase flows with various combinations of gas, water, oil and sand can be realized at the highest temperature of 140 oC and the highest pressure of 10 Mpa. Moreover, some loops in this system can adjust pipeline at different angels from 0 to 90°, which allow horizontal/vertical/sloping conditions to be simulated in laboratory. Many advanced measuring and monitoring technologies, such as Particle Imaging Velocimetry (PIV), high speed video camera and LPR/ER probe, are employed for simultaneously recording flow events and corrosion rates. An inhouse plane three-electrode probe is employed for conducting in situ electrochemical measurements. Such technologies would allow deep researching of corrosion behaviors and mechanisms in multiphase flow environments. Moreover, a new software based on Fluent and the existing multiphase corrosion models was developed to realize the numerical simulation of multiphase flow in loop.