Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Piping and pipeline are considered to be 60-70% of the oil and gas industry equipment. One of the most crucial factors to complete high quality projects within planned schedules is to focus on the quality of welding activities. Furthermore, the non-skilled welder is considered as a main parameter to produce welds with imperfections beyond the acceptable limits. Welders should have the required welding skills to perform the welding activities and produce sound welds, resulting in low weld rejection. On the other hand, poor welder’s performance produces low quality welds which affect the integrity of the welds and contribute to project delay and increase costs. This paper addresses methods to qualify welders and monitor their performance throughout the project lifecycle. The paper will study ISO 9606 approval testing of welders, American Welding Society (AWS) and American Society of Mechanical Engineers (ASME) Sec IX minimum requirements to qualify and certify welders. It will also illustrate the main variables that may contribute to high welding rejection rate, that are directly associated with the welders’ qualification and performance. Moreover, it will study the method of qualifying welders for different levels to properly assign welders based on load and criticality to avoid high welding rejection rate. The study shows that welders’ skill is the main parameter to produce high quality welds. Focusing on the causes of common welding defects, then educate and train the welders on the main factors causing these welding defects, will leave an influence to prevent defect recurrence
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Stress corrosion cracking (SCC) has been observed for over six decades in light water reactors structural components, with wide variations in the rate of SCC initiation and crack growth. Newer materials have been adopted in the last three decades, primarily the ~30% Cr Alloy 690 (UNS N06690) and its weld metals, Alloy 52 (UNS W86052) and Alloy 152 (UNS W86152). These materials were initially viewed as immune to SCC, but are now recognized to be susceptibility to SCC, and can exhibit high growth rates in some conditions.