Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper is presented as a practical guide to identifying the causes of corrosion in different sections of gas sweetening trains and ways to control and minimize corrosion in amine plants.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In any operating facility, the integrity of flare or relief lines should always be closely maintained, as it is one of the most important safeguards during plant upsets or emergency conditions. The most common damage mechanism in acid flare lines is acid gas dew point corrosion”. Corrosion in such systems is often dependent on fluid stagnation, especially in the presence of acidic water, during idle conditions.The intent of this paper is to shed light on the efforts done in a gas treatment facility to identify different root causes that impacted or accelerated Acid Gas Dew Point Corrosion. These included design deficiencies, equipment integrity, and process challenges. Moreover, the paper provides findings and recommendations to avoid the occurrence of similar events in acid flare lines.