Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Self-healing coatings for corrosion protection refer to those with the ability to sense the corrosive environment and to release preloaded inhibitors from the coating matrix by a controlled mode. In this work, SiO2 nanoparticle based polyelectrolyte nanocontainers were fabricated by the LbL method to store corrosion inhibitor BTA.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Solvent-free epoxy coatings have been widely specified and used over recent years in Australia as linings for a variety of immersion service exposures, specifically for potable water storage and tank linings for some petroleum products. However, they have not always delivered the durability or performance hoped for.
Stress development in epoxy coatings applied in water ballast tanks (WBT) on ships can lead to cracking, corrosion, and failure of ship’s hulls, with catastrophic consequences to the environment as well as loss of seamen at sea. Typically, these cracks do not appear during application and curing of the coating but after some finite time of service. The financial wellbeing of the ship’s owner can suffer greatly. To avoid such cracking, it is critical to have a clear understanding of the underlying mechanisms and primary controlling factors behind the coating cracks.
The creepage of corrosion underneath a coatings film applied to a steel test panel is often used as a performance test for the anti-corrosion properties of a coating system. Creepage is defined as the degree of corrosion (usually measured in mm) emanating away from a scribe line underneath a coating film applied to a steel substrate. There are several factors which may affect the degree of corrosion creep, one of which is the type and width of scribe cut into the coatings film to the steel substrate. There is a variety of scribing methods used in various test methods and specifications; however it is unclear if there is actually a performance difference observed in corrosion creep when using different scribe types.