Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This study seeks to generate corrosion data with a view to determining weak sections of the flow lines/wellhead structural facilities and installations. The offshore corrosion survey is also aimed at ascertaining the effectiveness of the CP system and integrity of the Crude Oil/Gas networks.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Marine environments can be very aggressive and present significant challenges in maintaining key infrastructure from the effects of corrosion. In Florida, thousands of bridges are in coastal areas and are continually, or periodically exposed to saltwater conditions. A clear majority of these bridges were constructed using steel reinforced concrete and are supported by precast pilings situated in saltwater, so for this reason, cathodic protection is a necessary strategy for controlling the effects of saltwater induced corrosion.
Toward the early 1980s, the Florida Department of Transportation (FDOT) began the evaluation of different approaches to control saltwater induced corrosion. Some of these included the use of integral pile jackets, specialty materials for concrete repairs, surface applied coatings and other innovative approaches utilizing galvanic anode technology. One such system was jointly developed with industry partners and sponsored by the Federal Highway Administration (FHWA) using integral pile jackets lined with expanded zinc mesh anodes to apply cathodic protection. This innovative approach provides for the problem of concrete repair while at the same time stopping the on-going process of corrosion both combined in one application. Both laboratory and field trials validated the benefits to this approach and confirmed that the system can mitigate corrosion and extend the useful service life of pilings by more than 20 years.