Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper describes a Joint Industry Project designed to test existing understanding of the mechanism of sensitisation to intergranular corrosion or stress corrosion cracking (IGSCC) of welded supermartensitic stainless steels. Existing data were reviewed and two series of welding trials and corrosion tests were undertaken.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The nickel base weld metal Alloy 82 is used in various applications in boiling water reactors (BWRs). Applications that are vital from a safety point of view are e.g., welds between core shroud support legs and the reactor pressure vessel (RPV), and feedwater nozzle to safe end welds. Laboratory testing and service history have shown that Alloy 82 is susceptible to stress corrosion cracking (SCC) in BWR environments. However, in comparison with Alloy 182, fewer failure cases have been reported, which could be related to the higher Cr content in Alloy 82 (~ 15 vs. ~ 20 %). It is also possible that the higher frequency of SCC in Alloy 182 is related to the wider use of this weld metal, and the larger surface area exposed to reactor water. Given the lower frequency of failures in Alloy 82, the database regarding SCC in BWR environments is much larger for Alloy 182.
Austenitic stainless steels are widely used in refineries and petrochemical industries due to their good combination of properties such as workability, mechanical strength and corrosion resistance. However, one of the most important problems they show, and which can lead to failures in service, is the susceptibility to intergranular corrosion and intergranular stress corrosion cracking (IGSCC). When these materials are subjected to temperatures in the range from 500 ºC to 800 °C, the precipitation of chromium-rich carbides occurs preferentially at grain boundaries (GB).
Stress corrosion cracking (SCC) is a failure mechanism that occurs in susceptible materials exposed to a corrosive environment and submitted to tensile stress above a certain threshold. In the presence of these combined factors, SCC can occur and potentially lead to the failure of an asset. This failure mechanism has been widely reported in several susceptible alloys of carbon steel, making SCC a considerable threat for pipelines in contact with corrosive soil.