Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
A parametric study of sour corrosion was conducted and is presented in this paper to provide a better understanding of corrosion in sour gas environments. Various parameters that are known to affect the corrosion rate were evaluated and their impacts on corrosion rate are discussed.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Supercritical CO2 storage has been gaining more attention due to its wider application. It is one of the desirable solutions for reducing CO2 emission, which is an important contributor to the global climate crisis. In other cases, some of the early applications were focused on the oil and gas industry, by using supercritical CO2 to sequence the mature wells for better production [1],[2]. In those environments, C1018 carbon steel was extensively used, due to its good balance of toughness, strength, and ductility as well as its excellent weldability.
H2S corrosion, also known as sour corrosion, is one of the most researched types of metal degradation in oil and gas transmission pipelines requiring a wide range of environmental conditions and detailed surface analysis techniques. This is because localized or pitting corrosion is known to be the main type of corrosion failure in sour environments which caused 12% of all oilfield corrosion incidents according to a report from 1996. Therefore, control and reduction of this type of corrosion could prevent such failures in oil and gas industries, and significantly enhance asset integrity while reducing maintenance costs as well as eliminating environmental damage.