Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
A case history is described involving microbiologically influenced corrosion (MIC) of AISI Type 304L stainless steel piping failure after being in contact with untreated stagnant, low chloride potable water for nine months. Specialized microbiological analysis techniques, including scanning electron and optical cmicroscopy, were used in the failure analysis.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
As part of a project to develop a database of seawater corrosion resistance including resistance to microbiologically-influenced corrosion (MIC) seawater, MIC exposure tests of five stainless steel alloys were undertaken for three and six month durations.
Builds upon a previous study that compared the corrosion resistance of multiple corrosion resistant alloys in several simulated (marine exhaust) scrubber environments.
Critical pitting temperature (CPT) for UNS S31266 was compared to UNS S31254 with the newly developed electrochemical method, modified ASTMG150 developed by K. Lund et al., using 3M magnesium chloride (MgCl2) instead of 1M sodium chloride (NaCl).
Two super duplex stainless steels were investigated: a W-free (UNS S32750) and a 2.1 wt% W-containing (UNS S39274) grade. Goals: To study localized corrosion resistance of super duplex stainless steels and how W affects the same.
Tests were conducted in simulated water environments with nutrient-rich environments with sulfate reducing bacteria (SRB). Effects of crevice environments, caused by macrofoulers on corrosion and in comparison with biotic condition, were studied.
This paper presents and discusses results from testing of AA5083 and AA6082 in natural seawater at 100C. Samples exposed up to 6500 hours under different condition including polarization to -1500 mV vs. Ag/AgCl, - 1050 mV vs. Ag/AgCl and -700 mV Ag/AgCl.
The testing described in this paper is part of a wider initiative by the Electric Power Research Institute (EPRI) to perform a due-diligence assessment to support possible application to plants and demonstrate the use of potassium hydroxide (KOH) in western Pressurized Water Reactors (PWRs). Lithium hydroxide (LiOH) is used in the primary coolant loop of PWRs to modify the pH of the coolant water. LiOH is most commonly used as the alkalizing substance as 7Li is already present in the waterchemistry as a by-product of the neutron reaction with boron (10B). To reduce the risk of accelerated corrosion of the Zircaloy fuel cladding material, there is an upper limit of 3.5 ppm for 7Li, although standard starting chemistry is typically 2 ppm. The amount of lithium is subsequently reduced during operation as the required level of boron is reduced due to fuel burnup through the fuel lifecycle.