Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This case history covers the stray current corrosion control program for a natural gas pipeline operator with assets influenced by operation of a nearby direct powered light rail transit system.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Case histories where throttling down the cathodic protection was evaluated to determine the impact on reducing the AC corrosion threat. Includes the use of fast-response electrical resistance corrosion rate probe monitoring technology.
The goal of this research was to relate inhibitor alkyl tail length to changes in activation energy of the electrochemical process associated with CO2 corrosion of an API-5L-X65 steel at pH 4.0.
Numerical modeling software is used to fit the real field AC interference data to verify the rationality of related boundary settings. Then possible AC mitigation solutions are evaluated and optimized based on the verified software boundary settings.
Stray current prevention, where do you start? When dealing with stray current from a DC Transitsystem it is all about building in “layers” of protection. This begins right from the start of your project through the creation of a design and maintenance guideline, through construction with inspection and testing plans and then through long range testing and maintenance plans.
Cool coatings can play an important role in reducing global energy consumption and increasing interior comfort. They do this by minimizing solar absorption on a surface whilst maximizing thermal emission. Used in this way, a cool coating is able to reduce the flow of heat from the exterior coated surface into the building, resulting in lower internal temperatures.
Pipeline corrosion may result from alternating current (AC) interferences from various sources, for example, high voltage AC (HVAC) transmission lines collocated with pipelines. AC mitigation is necessary to minimize corrosion risk, as well as personnel hazard, if intensity of AC interferences, normally characterized as AC induced voltage and current density, exceeds certain thresholds. Field readings of AC induced voltage and AC current density obtained from test points along a pipeline are often regarded as indicators of such risks.
This study attempted to exemplify the AC mitigation design practice for an urban gas pipeline by numerical calculation, including AC interference risk evaluation, AC mitigation design and mitigation effectiveness assessment.
One of the greatest problems facing the flooring industry is moisture vapor emission associated with concrete floors. Coatings blister and peel, wood flooring warps and buckles, adhesives fail to perform and carpet grows mold costing millions of dollars in claims, repairs and serviceability issues. This paper will discuss the causes, evaluation and mitigation methods to address this issue.
Extensive and increased collocation of high voltage AC (HVAC) electrical transmission lines, coupled with advances in coating technology, has resulted in the emergence of the possibility of transfer of electrical energy from the HVAC line to paralleling utilities through electrical induction. That transfer of energy can result in safety risks for personnel, as well as corrosion risks for below grade assets. In order to mitigate those risks, operators ground the induced AC using grounding electrodes, typically consisting of bare copper cabling or zinc ribbon.
Offshore oil production facilities are subject to internal corrosion, potentially leading to human and environmental risk and significant economic losses. Microbiologically influenced corrosion (MIC) and reservoir souring are important factors for corrosion-related maintenance costs in the petroleum industry.1 MIC is caused by sulfate-reducing prokaryotes (SRP), which can be Bacteria (SRB) or Archaea (SRA), with the main focus in literature being on SRB.2–5 The microorganisms most frequently reported in literature to be responsible for MIC are the SRB; Desulfovibrio, Desulfobacter, Desulfomonas, Desulfotomaculum, Desulfobacterium, Desulfobotulus, and Desulfotignum, and methanogens.2,5
This work will examine and document the conditions that influence the phenomena of H2S generation, and generate quantitative data on the H2S removal performance of the oil soluble fully dispersible transition metal chemistry based H2S scavenger product line.