Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The relationship between this sensitization and the microstructural features of Al 5083-H116, 5083-H131, 5083-H321, 5456-H116 aluminum alloys, such as grain boundary misorientation angle, dislocation densities, and β phase nucleation densities were examined and reviewed.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Fireside corrosion is a serious concern for power generation industry since the harsh conditions lead to an accelerated corrosive attack of plant components. This study aims to investigate the fireside corrosion behavior of different metals under char and lignite conditions and with increased amount of chlorine and potassium.