Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In-situ electrochemical techniques were used to investigate the effect of sulfate-reducing bacteria specie Desulfovibrio alaskensis AL1 colonization and its metabolic products on carbon steel corrosion. Open circuit potential (OCP) measurements showed a slight potential shift toward more positive values appearing just after microbial inoculations.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In this work, a marine environment due to the presence of marine bacteria was exposed to three zinc-rich epoxy coated-steel samples with different carbon nanotube additions. The electrochemical activity was monitored by using open circuit potential and electrochemical impedance spectroscopy.