Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Modern high performance paint systems are so durable that when exposed to natural weathering they may show only slight signs of deterioration. This means that new coatings being marketed have limited track records. Which creates an increased reliance on accelerated laboratory testing to evaluate performance.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The effect of soluble salts on long-term durability of carbon steels coated with epoxy paint. A surface was contaminated by different soluble salt concentrations. Based on NORSOK M-501 and ISO 20340, immersion and cathodic disbonding test were done for 6 months.
Zinc rich primer coatings, both organic and inorganic, are extensively used in highly corrosive environments and they are part of a high performance coating system in the Protective Coatings Industry. During the 60’s and the 70’s, zinc rich epoxy primers dominated the market. Later, zinc ethyl silicate primers took over mainly due to their higher potential to corrosion protection. Nowadays however, new developments in zinc epoxy primers are setting the two categories of Zinc rich primers on the same level in terms of anticorrosion performance while adding the advantages of Epoxy based primers.
Splash and immersion zones on offshore installations are areas that are exposed to extremely aggressive environments due to the effects of sea water, tides, wind, waves, and/or ultraviolet radiation. Various certifications such as NORSOK(1) exist to help guide customers select a coating based on its corrosion resistance performance. Despite the necessity of these standards, it is helpful to understand that other properties such as substrate surface and cure conditions can greatly effect performance of the coatings. In this paper, we will compare adhesion of two coatings to different substrate surface conditions while both coatings will be cured in two different environments. Our goal is to investigate the effect of curing environment of coatings on adhesion to the substrate.