Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This work demonstrates that the pretreatment of carbon steel and 9Cr alloy with model acids yields iron oxide scales with different morphology and chemical composition as determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM).
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion rate of mild steel and character of corrosion products in sour environments at temperatures from 20 to 200°C. H2S-H2O water chemistry model was developed. Then, H2S corrosion tests were done at 80, 120, 160 & 200°C - exposure time of 4 days.
Sweet (CO2) and sour (H2S) corrosion have continuously been a challenge in oil and gas production and transportation. Yet, some key issues are still not well understood, especially at high temperature production conditions. A CO2/H2S ratio of 500, which has been used (often inaccurately) to determine which corrosion mechanism is dominant, is probably even less valid at high temperature. The nature of the corrosion products forming at high temperature in CO2/H2S environments and their effects on the corrosion rate are not known. Finally, the impact on pipeline integrity of environmental changes between sweet and sour production conditions (simulating reservoir souring) has not been well documented. CO2, H2S, and CO2/H2S corrosion experiments were conducted at 120oC to investigate corrosion mechanisms and corrosion product layer formation at high temperature. The results show that the corrosion products were still clearly dominated by H2S under the pCO2/pH2S ratio of 550. Formation of Fe3O4, FeCO3, and FeS corrosion product layers had a direct impact on the measured corrosion rates and was dependent on the gas composition and on the sequence of exposure (CO2 then H2S and vice versa). Compared with H2S corrosion alone, the presence of CO2 could retard Fe3O4 formation in CO2/H2S mixture environment. No obvious change in steady state corrosion rate was observed when the corrosion environment was switched from CO2 to H2S and vice versa.
Among the techniques disseminated in the industry to protect carbon steel pipelines against internal corrosion, the use of corrosion inhibitors (CIs) is one of the most common. Organic compounds containing nitrogen are commonly employed in the petroleum industry to decrease corrosion rates. The high inhibition efficiency can be attributed to adsorption capacity on the metallic surface, creating a protective film that interferes with the electrochemical reactions involved in the corrosion processes.