Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This work evaluated the effectiveness of the dewatering process after hydrotesting and examined the internal corrosion threat posed by residual water trapped in crevices - and water pushed into a dead leg – of a pipeline.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Steel structures are often fabricated by bolting (or riveting) structural components together. Bolted joints result in multiple crevices between the bolted members and fasteners. These crevices are typically more susceptible to corrosion than flat surfaces because they tend to retain water/contaminants, they are difficult to properly coat, and the crevice geometry tends to support electrochemical phenomena that accelerate corrosion. This paper will evaluate the effectiveness of various coating practices at mitigating corrosion around these joints.