Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In recent years and months some countries started to label nuclear energy as clean energy because it does not increase the carbon footprint in the planet. Figure 1 shows that nuclear energy is the largest contribution of clean (or green) energy in the USA. This clean energy comes from the commercial operation of boiling water reactors (BWR) and pressurized water reactors (PWR). The total number of nuclear power reactors in the USA is slowly decreasing in time because they became non-economical to operate compared to the burning of natural gas. The International Atomic Energy Agency (IAEA) reported that in 2013 there were 102 light water reactors (LWR) producing electricity in the USA, but in 2020 the total LWR number decreased to 94 due to the decommissioning of eight reactors.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
After a loss of coolant accident a nuclear reactor needs to be flooded, quenching the fuel rods, which would suffer a thermal shock. Six commercial alloys of nuclear interest were tested for resistance to quenching measures after exposure to air at 1200°C for 2 hours.