Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Pressure cycling and ultimate failure pressure testing was conducted on various pipe samples to verify the design formulas meet the specifications and are correct for use in design of field repairs. Results show that use of strain-based design methodologies for composite repair systems is suitable and effective.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Impact of exposure to a low temperature environment below -30oC (-22oF) was investigated on a carbon fiber and epoxy composite repair system that had previously been qualified to the ASME(1) PCC-21 Article 4.1 nonmetallic repair standard.
Only a few researchers have studied the effect of carbon fiber repair on corrosion processes. The main protective effect is the "protective barrier" which is sometimes called passive protection against corrosion, comparable to some techniques such as anticorrosion coatings of concrete structures. Indeed, CFRP materials, applied as external reinforcing material on reinforced concrete structures form a protective barrier against the penetration of moisture and pollutants such as chlorides or carbon dioxide.1.2.3.4.5 Apart from this impermeable barrier action, it has been found in these studies that the confinement of CFRP concrete has a positive influence on the onset of corrosion and on its velocity. Very little research has investigated the coupling between mechanical reinforcement and impressed current system.6,7,8
Composite coatings are a class of materials that are described as fiber-reinforced polymers (FRP) that consist of extremely strong tensile fibers saturated in a binding resin. From the original development as tank bottom lining materials designed to handle surface movement and corrosion, the applications for composite coatings have broadened and moved into the mainstream, with industry-accepted design codes written around their uses and applications.
Fiber-reinforced polymer (FRP) strengthening has become a common technique used by many State Departments of Transportation (DOTs) around the country to address deficiencies with bridge structures. Carbon fiber strengthening systems are routinely used to strengthen pier caps, pier columns, concrete girders, impact damaged girders, and now steel structures. The paper will introduce the audience to the materials and the unique characteristics that make them so prized for repair and strengthening applications in civil infrastructure applications. Their use in bridge projects will be highlighted.