Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper re-examines most public and in-house corrosion data on the effects of six typical impurities to advance the fundamental understanding of how pipeline steels corrode in sc-CO2 environments and identify knowledge gaps for further investigations.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Stainless steels and Ni-base alloys are often considered as construction materials in applications where highly corrosive conditions are expected. High levels of halides, low pH and high temperatures are factors that often contribute to the selection of such materials.
Ten different alloys have been included in this work, representing a range of highly alloyed stainless steels and Ni-base alloys. The purpose has been to evaluate the corrosion resistance of stainless steels with alloying content in the 6Mo range or higher, and competing Ni-base materials. The austenitic grade N08904 and two super-duplex grades have also been included for reference.
This paper describes some of the materials and process challenges facing geothermal energy developers targeting efficiency improvements and extremes of aggressive geothermal fluid chemistries and temperatures.
Mining is the essential process of extracting materials from the earth. It dates back to prehistoric times when the earliest humans mined flint, copper and gold. These basic materials were then used for tools, weapons, currency. Today, there is a wide array of mined products from the extraction of valuable materials. Mining is a growing industry with many varied processes and system designs depending on the extraction requirements, processing techniques, and restoration of the land after a mind is closed.
In the present study, corrosion behavior of base metal (BM), all-weld-metal (AWM) and heat-affected-zone (HAZ) samples of C-276 (UNS N10276), C-22 (UNS N06022) and C-2000 (UNS N06200) alloys were evaluated in concentrated hydrochloric (HCl), sulfuric (H2SO4) and nitric acid (HNO3).
Highly alloyed stainless steels and Ni-based alloys may be used in a wide range of different chemical environments. By investigating how different alloys are affected by environmental changes – be it chemical composition, temperature, contaminants or others – it is possible to learn more about how material selection can be optimized to improve both cost efficiency and longevity of a system.
UNS N08935 is a highly alloyed austenitic material in the borderland between stainless steels and Ni-based alloys