Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Periodic inspections have identified visible cracks on the inner surfaces of steam stop valve and control valve casings at four coal-fired electricity units, each with approximately 50 years of operation. Evaluations were performed to assess the remaining life of those components.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
An effort was executed, to leverage the inherent benefits of polysiloxane coatings, to investigate, to assess or develop, and to implement an effective corrosion stain remover in the Navy with the focus of reducing both maintenance costs and time.
A stochastic model of the overall cleaning process and consequent corrosion was developed for an ethylenediaminetetraacetic acid (EDTA) based cleaning process. The model includes: (1) a chemical reaction engineering model(s), (2) a finite-element analysis (FEA) and (3) a Markov model of non-uniform corrosion sites.
Composite materials are being widely implemented for repair scenarios within refineries – domestically and around the world. This paper will discuss concerns, considerations, and needs typically encountered when using Engineered Composite Repair systems to repair live, operating piping systems in a plant environment.
Technical analyses and laboratory testing in advance of a wiped-film evaporator system installation and operation as well as the results of initial cleaning evolutions. The technical evaluations included: 1) finite element (FE) stress analyses, 2) laboratory displacement measurements to confirm FE results, 3) material integrity testing, and 4) laboratory effectiveness testing.
Nickel based alloys are candidate materials for high temperature structural applications in Fluoride Salt Cooled High Temperature Reactors. This study presents preliminary data on the corrosion behavior of selected experimental Nickel alloys in 46.5 LiF-11.5 NaF-42.0 KF (FLiNaK).
Validation results of feature level and joint level CGR based on feature matching and signal matching. These results enable pipeline operators to establish defect repair schedules and re-inspection intervals with increased confidence.
By implementing Automated Waveform Analysis during CP surveys, operators of structures using CP systems can accurately and consistently record CP data to better assess their level of protection.
Pressure cycling and ultimate failure pressure testing was conducted on various pipe samples to verify the design formulas meet the specifications and are correct for use in design of field repairs. Results show that use of strain-based design methodologies for composite repair systems is suitable and effective.
The focus herein is on comparing integrity probabilistic analysis approaches with a brief discussion on the existing deterministic approaches. The comparison study utilizes real life application of In-Line-Inspection (ILI) and field measurements of corroded onshore pipelines.
An optical fiber corrosion sensor is developed to monitor the penetration of corrosion pits in steel bars. Simply made by encasing one end of an optical fiber into a steel straw. As corrosion penetrates the steel straw wall, the solution and corrosion products fill inside and contaminate the fiber end surface, resulting in a change in the reflectivity.
It has been documented that improved desalting efficiency reduces the risk of corrosion and vice versa. This paper introduces a new way of using the desalting process to help control overhead corrosion. The end result is the corrosion engineer has a new tool to reduce the risk of salt formation.