Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Laboratory exposure testing of carbon steel to water from different regions of the United States, with varying chemistries and chloride content. The results of chemical analyses conducted in the laboratory, including elemental analysis by SEM/EDS and analysis by x-ray diffraction are correlated to water chemistry.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The corrosion products on samples from 31 stations (0.1 to 21 miles from the ocean) were analyzed using XRD to observe the intensities and peaks related to akaganeite, goethite, lepidocrocite and hematite products.
The extension of nuclear reactor lifetimes beyond 40 years requires the qualification of plant components to ensure performance past their initial design requirements. Nickel-based alloys containing chromium (NiCr) are of concern at these extended lifetimes, as these types of alloys form an embrittling precipitate phase. Below a critical temperature—which is above the normal 300-400⁰C reactor operating temperatures—NiCr alloys form a stable, fully coherent MoPt2-typelong-range ordered (LRO) phase with stoichiometry Ni2Cr.