Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In this study, a combined experimental and modeling approach was used to characterize the effect of electrolyte layer thickness on electrochemical and localized corrosion distributions in the crevice between SS fastener and Al alloy component.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
To investigate the corrosive impact of fuels with biogenic components by performing corrosion fatigue tests on notched and un-notched specimen of stainless 17% chromium steel 1.4016 (X6Cr17) AISI430 in air and biofuel E85 (fuel with 85% ethanol added).
In this study a coupled multielectrode array sensor (CMAS) is used for coating and pretreatment evaluation on carbon steels. The preliminary testing results are summarized and discussed for further application.