Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper looks at one major water and wastewater municipality with an established system for external corrosion control. Details of their systematic approach, how it developed and is applied, are included.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The life of offshore jacket structures can be extended up to 30 years towards the end of their design life by retrofits. For larger structures, and in unusual cases, semi-remote ICCP anode sleds are a favorable option compared to sacrificial anode cathodic protection (SACP) due to the high current output from each individual installation, reducing the time to install substantially. Anode sled locations are determined based on site plans, experience, survey data, and equations evaluating “remoteness” or “voltage rise” criteria.
This paper discusses the corrosion mitigation strategy for protecting the submerged sections of a monopile wind turbine structure off the east coast of England in UK waters.