Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The paper describes results of potentiodynamic and potentiostatic electrochemical tests carried out in alkaline solution, in the presence of chlorides, on binary mixtures with nitrite, dimethylethanolamine (DMEA), glutamine and benzoate.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper discusses the product design philosophy for corrosion inhibitors used for CCTS (Carbon Capture, Transportation and Storage), which have to work in both vapor phase and liquid phase at the same time.
In the hydrocarbon industry, internal corrosion is one of the most worrisome threats because it can cause catastrophic failures in the pipelines and cause harm to people and the environment. Some authors mention that internal corrosion damage is due to components such as H2S, CO2, mercaptans, sulfate-reducing bacteria, and suspended solids. These variables lead to thickness losses in the ducts, which contributes to the increase in the rate of deterioration.1 2 3 study reported by Askari et al, shows that the internal corrosion rate can be so high that it can consume the 3-6mm allowed for the pipeline in a year, which leads to irreparable economic losses.4
Corrosion of the internal surfaces of pipelines is one of the serious issues facing the oil and gas industry. Produced oil and gas always contain some water mixed with brines and contain varying amounts of carbon dioxide (sweet gas), hydrogen sulfide (sour gas) and organic acids1. All of these can affect the integrity of the low-carbon steel pipes used in the construction of downhole gas wells. CO2 gas, along with the high salt content of production water, causes serious corrosion on the internal walls of corrosion resistance alloys (CRAs) and steel pipelines used in downhole gas wells.
Test method to evaluate coatings w/conductive carbon pigmentation as Cathodic Protection (CP) anodes on atmospherically exposed reinforced concrete. Anode coatings are not to provide a protective barrier. HISTORICAL DOCUMENT