Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The monitoring program used in the Danish Sector of the North Sea to manage microbiologically influenced corrosion (MIC) risk assessment for seven pipelines. Quantitative data on microbial activity was obtained from pigging debris using real-time polymerase chain reaction of MIC-causing microorganisms.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
To study the effect of repeated biocide treatments to mitigate microbiologically influenced corrosion (MIC), we used a Center for Disease Control (CDC) biofilm reactor to generate and remediate corrosive biofilms on carbon steel coupons grown from a produced water sample from a salt water disposal (SWD).
Sampling of pigging debris was performed from three multiphase pipelines that previously were exposed to microbiologically influenced corrosion (MIC) due to high abundances of sulfate reducing prokaryotes (SRP) and methanogens.
A leak suddenly occurred at the 24-inch common crude piping from the separators heading to the degassing boot inlets and the wet crude tanks in an oil gathering center. The initial observations showed the leak was due to a deep isolated pit and localized corrosion. Additional inspections by manual ultrasonic thickness (UT) and long range ultrasonic thickness (LRUT) measurements for the 24” common crude line showed similar deep isolated pits (up to 70% thickness reduction) scattered across the length of the 1100 meter piping.
Microbiologically influenced corrosion (MIC) is a key oilfield problem associated with microbial activity, and can be described as the accelerated corrosion of surfaces (usually concrete or iron/steel) by the biological action of naturally present or externally introduced microorganisms. MIC incidents can occur anywhere that a system is exposed to the environment, where microorganisms can enter often via fluid flow and colonize various surfaces for their own growth. MIC is a persistent concern in practically any upstream, midstream, or downstream system where water could be present for microorganism colonization, including topside, subsurface, aerobic (with oxygen), anaerobic (without oxygen), and at extreme temperatures and salinities.
MIC-causing microorganisms were investigated in a 16” diameter and 9.6 km long injection water pipeline. Nitrate was added to the water and pigging debris from the pipeline showed that both sulfate-reducing bacteria (SRB), nitrate-utilizing bacteria, and methanogens were present in numbers of 105 – 106 cells/g.
Both mesophilic and thermophilic anaerobic digesters are currently being utilized to treat sludge derived from more than typical municipal sewerage sources. Wastewater treatment plants are accepting septage and sludge from food waste and industrial contributors routinely today. Receiving these other sources of waste which are extremely high in volatile solids is a source of significant income for the utilities.