Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Reactive transport modeling (RTM) is applied to simulate ion sulfide scaling - a problem for oil and gas production from sour reservoirs. Results reveal spatial and temporal distribution of iron-bearing scale precipitation, wormhole formation, and reservoir pressure/ water chemistry evolution.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Numerical modeling software is used to fit the real field AC interference data to verify the rationality of related boundary settings. Then possible AC mitigation solutions are evaluated and optimized based on the verified software boundary settings.
Cathodic protection (CP) is a well-established technique that effectively prevents corrosion of metals by adjusting the equilibrium potential of metallic structures in an electronegative direction. As the applied current increases, it reduces the anodic dissolution rate, thus leading to a decrease in the corrosion rate. The effectiveness of CP can be confirmed by measuring the protection potential values along the structures, ensuring the uniformity of the applied current, and observing the resultant potential distribution in the field.