Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
An advanced material of nickel-based alloy has been developed for Oil Country Tubular Goods (OCTG ) to be applied in sour conditions to injection of seawater into wells for enhanced oil and gas recovery.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A cold-worked carbon steel pulsation dampener located on a glycol circulation pump failed catastrophically in service. The two parts of the failed dampener were projected several tens of meters across the offshore facility. The failure was investigated initially using traditional metallurgical techniques, but this failed to reach a conclusive failure mechanism.
Bolted connections for subsea flanges and other components must be reliable as they are often used for pressure containing components (subsea Christmas trees, connectors …). When possible, the primary choice for bolting is low-alloy steel with a limitation of actual yield strength (135 ksi) and a maximum hardness of 34 HRC to prevent HSC.
All tests in this program have been performed under simulated PWR primary cooling water conditions. The oxide layer development and morphology is addressed in the literature and more intensively being investigated during the last ten years. The oxide layer that is typically observed under these conditions has a double layer structure. The outer layer is composed of large particles of Fe3O4 and the inner layer mainly consists of small particles of FeCr2O4, e.g.
Alloy 690 has been utilized since the late 1980s as a replacement for Alloy 600 in pressurized water reactors (PWR) pressure boundary components due to laboratory data indicating higher resistance to stress corrosion cracking (SCC). Although to date no SCC incidents have been reported on Alloy 690 components in service, the growing interest of extending the operation life of PWRs beyond 60 or even 80 years has raised concerns for the potential occurrence of long-range ordering (LRO) in Alloy 690 and its compatible weld metals.
The Naval Nuclear Laboratory (NNL) has performed evaluations of SCC in 304/304L stainless steel since 2005 with the goal of developing an empirical equation. Testing has focused on the effects of temperature, stress intensity factor, material cold work, orientation, and sulfur content on SCC in hydrogenated water. Non-Arrhenius growth, termed herein as high temperature retardation (HTR), was observed in several studies where the SCC growth rate was found to slow at elevated temperature at low cold work levels in 316 and 304/304L stainless steel.
Stress corrosion crack initiation of two thermally-treated, cold-worked UNS N06690 materials was investigated in 360 ºC simulated primary water using constant load tensile tests and blunt notch compact tension tests equipped with direct current potential drop for in-situ detection of cracking.
This paper will discuss the crack growth rates measured for four different heats of HIP material and discuss possible relationships with hardness and stress intensity factor, along with considerations of grain size and features observed on the fracture surface.
Recent results of sour gas and hydrogen embrittlement testing of CW N07022 alloy will be presented. The test results of CW N07022 alloy will demonstrate that it offers superior properties to precipitation-strengthened Ni-base alloys for demanding oil and gas applications.