Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
SSC testing was performed using transverse full-size four-point bend specimens with a thickness up to 35 mm at loads up to 90 % of the actual yield strength. Finite element simulations analyzed the stress distribution under high load.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
HISTORICAL DOCUMENT.
This standard addresses the testing of metals for resistance to cracking failure under the combined action of tensile stress and corrosion in aqueous environments containing hydrogen sulfide (H2S). This phenomenon is generally termed sulfide stress cracking (SSC) when operating at room temperature and stress corrosion cracking (SCC) when operating at higher temperatures. In recognition of the variation with temperature and with different materials this phenomenon is herein called environmental cracking (EC). For the purposes of this standard, EC includes only SSC, SCC, and hydrogen stress cracking (HSC).