Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
5XXX-series aluminum has been used in multiple naval vessels because it offers excellent strength to weight ratios, weldability and low cost. Although 5XXX series aluminum alloys generally provide excellent corrosion resistance, exposure to moderately elevated temperatures (e.g., solar exposure) results in sensitization due to precipitation of the beta phase (Mg2Al3) at the grain boundaries. The sensitization of marine grade aluminum and subsequent material degradation due to stress corrosion cracking (SCC) and intergranular corrosion (IGC) is a severe problem, causing expensive repairs and out of service time.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The SCC of stainless steels has been an issue facing light water reactors (LWRs) since 1965 when sensitized components failed in the Dresden boiling water reactor (BWR). Numerous experimental efforts have been performed to characterize the SCC of stainless steel in LWRs in the last several decades and many of these efforts have been reported at each of the prior Environmental Degradation of Materials Conferences. Recent research has focused on characterizing SCCGR dependencies in hydrogen deaerated water. Testing of cold worked (CW) stainless steel has shown that heavily CW stainless steel has Arrhenius temperature functionality with a thermal activation energy of roughly 75 kJ/mol . In moderately to low CW stainless steel, a departure from Arrhenius temperature functionality is observed due to high temperature SCCGR retardation (HTR). This paper further extends this research and describes tests which were conducted to characterize the SCCGR temperature dependency of sensitized and CW 304 SS in hydrogenated water.