Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
A computational approach to assess the sensitization propensities of titanium and niobium stabilized stainless steels was investigated.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Steel components in refineries and petrochemical plants are exposed to conditions of temperatures higher than 200°C with high pressures of hydrogen. Such conditions avail the driving force needed for the hydrogen to dissociate and penetrate the steel surface. Once the atomic or nascent hydrogen is within the steel microstructure, it can react with the carbon present, usually in carbides, to form methane gas within the steel structure as suggested by the below reactions:[C]α + 4[H]α → [CH4]gas (1)where α refers to ferrite.
Alloy 600 (Ni-16Cr-9Fe) is well known to exhibit intergranular corrosion and intergranular stress corrosion cracking (IGSCC) upon exposure to high temperature water environments, including those found in service environments of pressurized water reactors (PWR). While the higher Cr content alloy 690 exhibits superior IGSCC resistance in these environments, alloy 600 is still in use at many light water reactor plants. Part of the difficulty in assessing alloy 600 performance is the significant variability in behavior from heat to heat, both from the standpoint of initial alloy chemistry and the subsequent thermomechanical treatment of the material.