Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Latest developments in iron sulfide dissolver studies. Lab tests performed to evaluate some new products for thermal stability, corrosivity, compatibility with formation water, and dissolving authigenic mineral and field deposits.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Based on two hypotheses of the cause of this type of localized corrosion: an electrochemical galvanic effect and a chemical effect. Observations indicate that the electrochemical galvanic hypothesis was the key mechanism in this type of localized corrosion.
H2S corrosion, also known as sour corrosion, is one of the most researched types of metal degradation in oil and gas transmission pipelines requiring a wide range of environmental conditions and detailed surface analysis techniques. This is because localized or pitting corrosion is known to be the main type of corrosion failure in sour environments which caused 12% of all oilfield corrosion incidents according to a report from 1996. Therefore, control and reduction of this type of corrosion could prevent such failures in oil and gas industries, and significantly enhance asset integrity while reducing maintenance costs as well as eliminating environmental damage.
The formation of greigite and/or pyrite seems to correlate with onset of localized corrosion Experiments involving deposition of pyrite on the steel surface were conducted to investigate if localized corrosion occurs when pyrite is deposited on mild steel in an aqueous H2S environment.