Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Although computational methods have been separately developed to predict corrosion and fatigue crack growth rates for metallic structures, challenges remain in implementing a methodology that considers the combined effects. In this work the output from a galvanic model is used to determine the spatial distribution of corrosion damage; providing a guide for the location of discrete corrosion damage features that can be analyzed using stress fields from structural models. In order to build confidence in this approach the galvanic models are validated by comparing predicted results to surface damage measurements from test specimens subject to ambient atmospheric exposure. There was good comparison between the predicted spatial distribution of corrosion damage and the measured surface damage profiles obtained from the galvanic test specimens. Following this exercise novel computational corrosion damage features were developed to represent simplified cracks shapes emanating from corrosion pits. Stress intensity factors (SIF) for these newly developed hybrid pit-crack features were determined and these solutions compared to cases where the pit is assumed to be an equivalent crack. The impact of the local, cavity induced stress field, on the SIF solutions is discussed. Building on these findings a fatigue crack growth simulation was performed using an initial flaw emanating from a hemispherical cavity (corrosion pit) located at the edge of hole in a plate. A reasonable comparison, of the predicted number of crack growth cycles, to available experimental test results was achieved.
Moisture is a key component of concrete. It is critical to the curing and strengthening process of the product. It is however the use or misuse of this critical component that may cause expensive and unavoidable problems over the life of the floor
NACE TM0177 Method B is a standard method for evaluating stress-corrosion cracking resistance. Here, Digital Image Correlation determined strain distributions over the surface of bend samples made from corrosion-resistant alloys.
A review of galvanized steel and painted galvanized steel processes is provided, as well as the fundamentals and requirements for painted galvanized steel products. The corrosion processes found with both galvanized steel and painted galvanized steels are discussed.
The industry has been developing in-situ techniques to measure pipe properties in lieu of destructive approaches. This paper will review the techniques available to meet regulation changes announced in 2016 and propose procedural applications to improve repeatability and reliability.
From day to day, Robots advance from testing in labs to operating in the outside world. Theindustrial application of Robotic technologies continually increases, providing unique solutions fordifferent challenges. Flare System is an important and critical equipment required for continuoussafe operations for any petrochemical plant addressing proper burning of excess hydrocarbongases, unusable gases which cannot be recovered or recycled, and gas flaring protects againstthe dangers of over-pressure. This paper discusses the different types of robotic inspection,advantages, and limitations based on actual site demonstrations. As an innovative case, here tointroduce actual business case for close aerial inspection and surveying technique to avoidpolyethylene plant shutdown and providing a reliable inspection technique for on-stream integrityevaluation for the flare tip. Drones, formally known as unmanned aerial vehicles (UAVs), are aflying robot that can be remotely controlled, and offer an innovative inspection method launchedbetween 2006-2008 for Engineering professional aerial inspection and surveying using RemotelyOperated Aerial Vehicles (ROAVs). The visual inspection detection accuracy of (ROAV) offerhigher than the normal visual inspection and easily approach all the flare structure from fourdirections. Drone inspection cost is competitive considering the cost of maintenance to dismantlethe flare tip. Drone inspection can be used to assess the elevated flare parts for any seriouslydamage in order to define a clear maintenance scope ahead of shutdown.
Corrosion in the field manifests over a large timescale so when considering material choices in the design of aerospace systems and subsystems use is often made of accelerated tests such as ASTM B117 salt spray chamber test to rank the possible materials. Even these ‘accelerated’ tests take more than 1000 hours and despite their widespread use are often criticized as a design trade tool since the test environments are considerably different to the expected field environment running the risk of either hiding true corrosion processes or simply being unrealistically challenging for the materials under test.The corrosion community has expended substantial effort in trying to make the tests ‘more realistic’ but in doing so there is considerable debate about whether the tools employed to accelerate the corrosion (thermal cycling high salt concentrations UV exposure etc) actually introduce other corrosion processes that are not even present in the eventual targeted field of operation for the device under test.Computational techniques hold a great deal of promise as a way to understand the effects of different service environments but if the simulations cannot even discern between say an ASTM B117 test and an atmospheric exposure then the simulation results would be of questionable value.The processes involved in corrosion are many and complex however one key parameter is the electrolyte film thickness which will clearly be different whether inside a chamber at high humidity with a continuous supply of sprayed saltwater compared to exposure on a beach where diurnal cycles result in a very thin electrolyte of varying salt concentrations except of course when it is raining!To help designers quickly assess corrosion risk and choose appropriate materials Corrdesa have already developed an electrochemical database of modern alloys and coatings. This has been extended by deconvoluting the polarization data to accurately account for the impact of the actual electrolyte thickness on the oxygen reduction reaction.In this paper using fluid shell elements in a free surface flow formulation we actually predict the variable electrolyte film thickness in a CFD (Computational Fluid Dynamics) code for a given environmental condition on different test specimens and geometries. The appropriate polarization data for the local electrolyte thickness is then implemented with User Functions in a potential model framework. In this way the galvanic corrosion is simulated for a test device with a more realistic and variable film thickness.The result is that we can dial different test conditions into the simulation such as whether we wish to simulate chamber results or field results cyclic salt fog cyclic humidity (or both).Keywords: Computational Corrosion Analysis Galvanic corrosion prediction FEA corrosion prediction polarization data potential model fluid shell elements CFD
A case study of a fiberglass reinforced plastic scrubber which was evaluated with a novel ultrasonic technique followed by a destructive evaluation for retained mechanical properties and corrosion barrier condition. When compared, the results showed good correlation.
An iGOSP initiative ties multiple solutions together on a common wireless infrastructure, which allows systems to interact in such a way that they create new features, capabilities, automation and monitoring. The result is a facility that has unique efficiencies, maximum return on asset and delivers unparalleled value, visibility, predictability and adaptability.NGPD selected Abqaiq GOSP-3 to pilot the concept of an intelligent GOSP (iGOSP). Abqaiq GOSP-3 is one of the oldest facilities in NGPD; which was commissioned in 1978. The plant’s rack room has gone through several upgrade projects in the past. This resulted in present challenges including: Limited space in the rack room for any wired new instrument loop. Hence, an upgrade of the rack room will be needed for any future project. Limited spare cables in field junction boxes. Presence of local/pneumatic controllers.The ultimate goal is to sustain and expand Abqaiq GOSP 3 monitoring capabilities towards achieving operational excellence through the use of 4th Industrial Revolution (4IR) technologies. This plant is the first step in building a roadmap for other facilities to transform into the digital era through the use of state-of-the-art indus