Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The theoretical framework shown here includes a spreadsheet tool designed to accommodate all unique inputs and accounts for the time-value of money. It offers several output options, including the equivalent uniform annual cost, to aid decision makers in selecting coating systems.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Large underground, carbon steel tanks are used for interim storage of liquid radioactive waste. The current corrosion control program needs to be updated to account for the susceptibility to pitting corrosion of waste tanks due to the halide content of the secondary waste.
The corrosion profession, and the certified professionals who work in the industry, are committed to protecting people, assets, and the environment from the effects of corrosion. Those tasked with delivering the technical expertise to society must conduct their work with the knowledge and understanding of the ethical principles expected and required of those professionals.
The AMPP Code of Ethics is discussed in conjunction with relevant case studies and features real-life ethical violations of the AMPP attestations. Frameworks for making ethical decisions are also reviewed in this course along with the factors in the corrosion industry that can lead to unethical behavior.
This is an online, self-paced course which should take 1.5 to 2 hours to complete. After you have purchased the course in the store, log into your AMPP profile and select “Online Courses” to begin.
Purchase of this course includes a one-year subscription and is non-refundable. Students will have access to all course materials for a period of one year from the date of registration. All course work must be completed during this time period. Extensions or transfers cannot be granted.
Managing internal corrosion on pipeline systems and processing, storage and distribution assets. Strategies for applying this information. Threat assessment. Mitigation. Implementation. Monitoring. 2016 NACE E-Book
Field tests found that a natural gas pipeline system was interfered by a high voltage direct current electrode. Interference level was computed and agreed with measured values, validating the model. The effectiveness of various mitigation methods was computed and discussed,
Elaborates on some reported findings and identifies possible mechanisms and risks for further growth of defects in the reactor pressure vessel walls in the Belgian nuclear power reactors Doel 3 and Tihange 2 – which were restarted in 2015 after inspection found “thousands” of “hydrogen flaws”.
Suitability and potential benefit of using hydrogeochemical modelling to monitor scaling and corrosion during geothermal exploration and production in the high-salinity geothermal area of the North German Basin was explored.
Austenitic and ferritic-martensitic steel were irradiated with protons while exposed to simulated PWR primary water for 4-72 hr in 320°C water with 3 wppm hydrogen while irradiated at surface dose rates from 400-4000 kGy/s (4x10-7 to 7x10-6 dpa/s).
Seawater desalination with waste heat from nuclear or fossil power plants is an attractive alternative for the production of potable water.1 Multi-effect desalination process (MED) relies on the evaporation of water from a thin film of seawater.2 The heat of condensation is used in the evaporation of water from a subsequent film of seawater.
This paper describes some of the materials and process challenges facing geothermal energy developers targeting efficiency improvements and extremes of aggressive geothermal fluid chemistries and temperatures.
Two concrete formulations, one of ordinary portland cement and one of pozzolanic portland cement, are compared by rebar corrosion criteria. Both formulations are candidates for nuclear applications whose durability requirement is higher than 300 years.
A multicomponent High Entropy Alloy (HEA) AlCrFeNiMn processed with vacuum arc remelting procedure was tested for corrosion in geothermal environment in the Reykjanes Geothermal Power Plant in Iceland.