Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Historically the corrosion condition and cathodic protection (CP) effectiveness of pipeline networks have been monitored by over-the-line surveys. Pipe-to-soil potentials and rectifier outputs are the major parameters measured, and for some pipelines a more intensive close interval survey is executed. Today test stations and more frequently rectifiers are equipped with remote monitoring devices which is shifting the industry towards the world of digitization. Unfortunately, external corrosion is still not fully under control.
Operating a pipeline requires regular field surveys for controlling external corrosion threats. Surveys are typically performed at rectifiers and test stations, and occasionally a close interval survey between test stations is performed. Pipeline surveys provide only an indirect measure of the corrosion threat and are either labor intensive or do not provide sufficient granularity and accuracy to pinpoint corrosion features in a timely manner.A computational model of the primary and third party (crossing) pipelines and associated cathodic protection systems is built and further calibrated to accurately simulate protection status based on survey and monitoring data. The resulting digital twin is a replica of the real-world condition with a resolution at pipeline joint level for its full pipeline length. Fluctuations in field data are captured and translated into IR-free potentials and corrosion rate distribution at coating defects along the pipeline.This article discusses a case study of a calibrated digital twin model of a complex pipeline system. Back testing based on historical survey data was performed to identify events on the pipeline that increase the corrosion risk. The digital model will be used to improve the corrosion prevention strategy within an integrated external corrosion management program.
There is a gap between the Integrity management systems used by companies to manage their assets and the needs of the CP engineer. Integrity management systems do not fully meet the needs of the engineer responsible for corrosion as they do not provide access and visualizations of all the data the engineer needs to make fast and informed decisions. There is also often no easy way to see the trends in the data, or easily access the relevant video and photographic data also recorded during the survey.
Data from surveys is normally contained in reports and EXCEL spreadsheets often with different measurement locations and inconsistent naming of the locations between reports. In this paper a system is introduced which enables engineers to manage and visualise in 3D CP survey data and provide access to all the relevant information through a 3D visual interface to any member of the teams. The software gives the engineer the ability to visualize in 3D the historical and predicted CP protection on the structure and the status of the anodes in the CP system. It also provides information on long term trends in the survey data.
By integrating the corrosion data with a simulation model a “digital twin” of the structure can be created to make predictions of the present and future protection of all parts of the structure. For example the engineer can easily use the software to systematically monitor the differences between the model predictions and survey data to identify anomalies and give early identification of problems which will require action.
The paper will describe the system developed and present applications of both the 3D corrosion data visualisation and the simulation based digital twin
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Tetrakis(hydroxymethyl)-phosphonium Sulfate (THPS) is a very common active ingredient in oil and gas biocides. While product labels provide broad guidelines application dosing the lowest effective dose of THPS is difficult to determine. Site water chemistry and bacteria biology variability will affect the dose need to achieve the desired level of bacteria population control. For these reasons biocide dose response studies are commonly conducted on solutions containing bacteria to determine the effect of treatments before application.
Spent nuclear fuel (SNF) is currently stored in stainless steel dry storage canisters (DSCs) contained within concrete cask systems with passive ambient air cooling. These systems are emplaced, either horizontally or vertically, at independent spent fuel storage installations (ISFSIs), located at utility reactor sites. The ambient air introduces moisture, aerosolized salt particles, and dust to the canister surfaces. The composition of the aerosols depends on geographical factors, such as proximity to the ocean,industrial area, rural areas, and transportation corridors that use road salt for winterization.