Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Recently Crack Growth Rate and Threshold Stress Intentisity Factor analyses of data from Slow Strain Rate tests have been used for Stress COrrosion Cracking evaluation. This methodology has been discussed in detail based on different analytical techniques and the results from laboratory tests have also been presented.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Due to the increasing interest of the O&G industry on high grade tubulars working at high pressures, the assessment of operational conditions of Oil country Tubular Goods (OCTG) subjected to Sulfide Stress Cracking (SSC) is of particular importance.
AMPP adopts different test methods to evaluate material susceptibility to SSC in wet H2S environments, for which, Method D according to NACE TM0177 determines a quantitative value of material resistance using a Double Cantilever Beam (DCB) specimen that can be used for design and qualification purposes. This is a crack arrest type fracture mechanics test that can be traced back to the work of Heady in 1977 in which the material resistance to propagation of environmental cracks is expressed in terms of a critical stress intensity factor, KIssc.