Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In context of acceptability of 17-4 PH in sour service, an literature survey of complex metallurgy of this grade was done following a mechanical rupture in service. In addition, three 17-4 PH materials were studied in terms of microstructure, mechanical properties and susceptibility to sulfide stress cracking.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper will detail the environmental cracking test program and results when Alloy UNS S42028 (For applications such as high collapse liners sections in high pressure high temperature (HPHT) reservoirs) was exposed to medium density bromide based clear brine fluids at a temperature of 150oC (302oF).
A testing program was designed using high strength martensitic and duplex stainless steels, namely, UNS S41426, 17CR (17Cr-4Ni-2.5Mo-1Cu) and UNS S39274. A round robin testing program was carried out between two laboratories using a 15% HCl based scale dissolver package at 110°C.
As a companion document to MR21525, this Technical Report provides results, review and commentary on many investigations of HSC and includes important literature data, references, background information, service experience and related standards that were utilized in the development of the AMPP MR21525. Most of the information in this Technical Report covers findings from HSC field experience and HSC data from brine/CP exposure tests or from other cathodic charging experiments. It is important to note, in the use of MR21525 and in the review of data contained herein, that HSC can also be induced from hydrogenating environments and conditions other than from just from CP exposure alone. A non-exhaustive list of such conditions is presented later in this Technical Report.
In the oil and gas industry, the major standard for material selection today is ANSI1/NACE2 MR0175/ISO 15156 Parts 1-3. [1] While this standard deals extensively with environment cracking and its prevention for materials under exposure to production environments containing H2S, CO2, chlorides, and sulfur, it does not include any guidance or material requirements for resistance to environmental cracking (such as hydrogen stress cracking – HSC, or otherwise) under variable subsea conditions that involve exposure to seawater with varying levels of cathodic protection (CP). ISO 21457 [2] provides further guidance for materials selection and corrosion control for oil and gas production systems but does not provide adequate coverage of the issue of environmental cracking in subsea applications with CP.
It has become somewhat common in the oil and gas industry to convert producing wells containing 13Cr stainless steels to water injection wells. This practice has led to numerous tubing failures due to pitting of the 13Cr from oxygen dissolved in the injection water. The water source for these wells is often from produced water and seawater but other waters may also be injected.
The growth rate of small and long stress corrosion and corrosion fatigue cracks in 12Cr steam turbine blade steels in low conductivity water containing 35 ppm Cl- (simulating upset steam condensate chemistry) showed a significant dependence on crack size for the same mechanical driving force.
Martensitic stainless steels for OCTG materials are widely used in sweet and mild sour conditions. Environmentally-assisted cracking (EAC) is a major corrosion-related issue when using stainless steels as OCTG materials. The EAC in specific oil/gas well conditions with sour environments is defined as sulfide stress cracking (SSC) and stress corrosion cracking (SCC). The SSC is a type of cracking caused by hydrogen embrittlement, which is attributed to a cathodic reaction under acidic conditions, while SCC is associated with an anodic reaction. SSC testing for martensitic stainless steels for OCTG material is often carried out at or near ambient temperature under conditions simulating condensed water, and SCC tests are conducted at higher temperatures under conditions simulating formation water and/or the brine availability test.