Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Previous studies have shown that, from 80°C to 200°C in an H2S only environment, magnetite forms as an inner layer while iron sulfides are found in the outer layer. A descriptive model for the formation mechanisms of magnetite and iron sulfide at high temperature is presented.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion behavior of native naphthenic acids in two VGO fractions are compared with white oil solutions of the acids isolated from them by solid phase extraction (SPE). Tests are per the in-house “pretreatment-challenge” protocol on carbon steel and 5Cr steel samples.
Inhibition performance of a diethylenetriamine tall oil fatty acid imidazoline-type inhibitor (DETA/TOFA imidazoline) against CO2 corrosion of an API 5L X65 carbon steel was studied at two temperatures, 120C and 150C.
Several alternating current (AC) coupon test stations (CTS) located near AC power lines were investigated to assess the AC interference corrosion risk of the test coupons. Asstation consisted of two ½ inch (1.27 cm) diameter and 1received each AC test inch (2.54 cm) long carbon steel (CS ) coupons. Coupons are much larger than 1 cm 2 and current density measurements are not 100% relatable to the SP21424 or ISO 18086 criteria, since these refer to measurements on (typically) 1 cm2 . The current densities measured on the coupons in this study will underestimate the AC corrosion threat.
In aqueous carbon dioxide (CO2)-saturated environments, such as those found in geothermal energy, oil and gas and carbon abatement industries, various naturally occurring layers can be found on the internal surface of carbon steel infrastructure, such as pipelines, as they corrode in the mildly acidic conditions. Amongst the most commonly found layers are iron carbonate (FeCO3), iron carbide (Fe3C) and magnetite (Fe3O4). FeCO3 can offer corrosion protection to the underlying steel when formed under certain conditions, as too can Fe3O4. Fe3C is typically associated with enhancement of electrochemical activity of carbon steel and is revealed due to preferential dissolution of ferrite in the steel microstructure – through the formation of a porous network at the steel surface. Each of these layers play a fundamental role in the uniform and localized corrosion of the underlying carbon steel.
Among the techniques disseminated in the industry to protect carbon steel pipelines against internal corrosion, the use of corrosion inhibitors (CIs) is one of the most common. Organic compounds containing nitrogen are commonly employed in the petroleum industry to decrease corrosion rates. The high inhibition efficiency can be attributed to adsorption capacity on the metallic surface, creating a protective film that interferes with the electrochemical reactions involved in the corrosion processes.
This paper reviews current observations from the offshore oil fields and presents the potential biotic and abiotic mechanisms to magnetite formation.
Surface layers often form on carbon steel surfaces in carbon dioxide (CO2) saturated environments and under certain conditions can offer corrosion protection to the underlying steel. One such layer, magnetite (Fe3O4) is a semiconductor, having a reported electrical resistivity of the order of 10-2 to 10-1 Ω∙cm and band gap of 0.1 eV. The conductive properties of Fe3O4 are of significant importance when understanding the corrosion behaviour of carbon steel, as Fe3O4 can readily establish a galvanic couple with the steel surface upon which it has formed.