Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper studies empirical and correlation modelling of corrosion test-data for detailing C10H18N2Na2O10 (ethylenediaminetetraacetic disodium salt: EDTA-Na2) performance on concrete steel-rebar corrosion in 3.5% NaCl medium simulating saline/marine environment.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The effect of monoethanolamine (MEA), diethanolamine (DEA) and N-methyldiethanolamine (MDEA) on the corrosion behavior of N80 steel in water-saturated supercritical CO2 phase and supercritical CO2-saturated aqueous phase with impurities (SO2, NO2 and O2).
Imidazoline derivatives have anti-corrosive effects on metals such as carbon steel and are widely used in acid-corroded pipelines for conveying oil and natural gas. In this paper, a novel imidazoline inhibitor was designed and synthesized.
Internal corrosion of pipelines associated with oil and gas production and refinery has always been a challenge for corrosion engineers. Over the past decades, corrosion engineers have made significant progress in developing mitigation approaches to protect these carbon steel pipelines by using corrosion inhibitors (CIs), corrosion resistant materials, and various cleaning techniques. Among all these mitigation strategies, corrosion inhibitors are considered as the first choice in handling the internal corrosion of pipelines.
In the oil and gas industry, long-distance transportation of petroleum and related products is usually carried out in large-diameter carbon steel pipelines. Water present with the oil, along with corrosive species such as CO2, H2S and organic acids, causes severe corrosion of the inner pipe walls.1 An effective method of controlling corrosion is to continuously inject corrosion inhibitors into pipelines conveying oil-water mixtures. As corrosion occurs on water wetted metal surfaces, corrosion inhibitor (CI) molecules form protective films which retard electrochemical reaction rates at the water-metal interface,2 thereby protecting carbon steel pipes against CO2 ("sweet") corrosion and H2S ("sour") corrosion. Most commercial CIs are a complex mixture of several compounds that contain surfactant-type active ingredients, such as imidazoline, amine, phosphate ester, and quaternary ammonium derivatives.
Corrosion of the internal surfaces of pipelines is one of the serious issues facing the oil and gas industry. Produced oil and gas always contain some water mixed with brines and contain varying amounts of carbon dioxide (sweet gas), hydrogen sulfide (sour gas) and organic acids1. All of these can affect the integrity of the low-carbon steel pipes used in the construction of downhole gas wells. CO2 gas, along with the high salt content of production water, causes serious corrosion on the internal walls of corrosion resistance alloys (CRAs) and steel pipelines used in downhole gas wells.
Among the techniques disseminated in the industry to protect carbon steel pipelines against internal corrosion, the use of corrosion inhibitors (CIs) is one of the most common. Organic compounds containing nitrogen are commonly employed in the petroleum industry to decrease corrosion rates. The high inhibition efficiency can be attributed to adsorption capacity on the metallic surface, creating a protective film that interferes with the electrochemical reactions involved in the corrosion processes.
In oil and gas industry, during the transportation of wet gas with a stratified flow regime, the temperature difference between the fluid inside the pipelines and the surrounding environment leads to condensation of water on the upper internal surface and causes metal degradation. This phenomenon is known as Top-of-the-Line Corrosion or TLC.
The condensing phases can consist of not only water but also condensable hydrocarbons.
Localized corrosion is known as the most dangerous and unpredictable corrosion mechanisms found in hydrocarbon production and transmission systems. This mode of corrosion has the potential to cause serious financial loss, environmental damage, production interruption, and even loss of life. Over the years, corrosion engineers have made significant improvements on prediction and mitigation techniques to extend the lifespan of carbon steel pipelines, such as using of corrosion inhibitors; injection of such chemicals has proven to be effective and economic, making them a first choice over other alternatives