Search
Filters
Close

Pitting Corrosion Of A Ni-Cr-Fe Alloy In Chloride And Thiosulfate Solutions: One-Dimensional Artificial Pit Electrode Studies

Product Number: 51321-16523-SG
Author: Abraham A. Becerra Araneda/ Mariano A. Kappes/ Martín A. Rodríguez/ Ricardo M. Carranza
Publication Date: 2021
$0.00
$20.00
$20.00

Ni-Cr-Fe alloys such as UNS N08800 (alloy 800) suffer pitting corrosion in chloride (Cl- ) plus thiosulfate (S2O3 2-) solutions. This occurs due to a synergistic effect between both ions in a certain range of solution concentration and electrochemical potential. Potentiodynamic tests in 1 M NaCl + 10-3 M S2O3 2- solutions evidenced thiosulfate pitting by a peak in anodic current centered near -0.15 VSCE. The maximum anodic current of this peak increased with a decrease in potential scanning rate, reflecting the autocatalytic nature of the pitting process and the increased available time for pit growth. A wire of alloy UNS N08800 was embedded in epoxy to study the kinetics of anodic dissolution using the onedimensional artificial pit electrode. Pits were grown at -0.16 VSCE, near the anodic peak observed in potentiodynamic tests, and at 0.4 VSCE, i.e. above the conventional chloride pitting potential. At -0.16 VSCE, the one-dimensional pit was under ohmic drop control. When the wire was polarized to 0.4 VSCE, the usual transitions from activation, ohmic drop and diffusion control regimes were observed. Thiosulfate increased the rate of anodic dissolution during the activation-controlled regime of pit growth and decreased the transition potential (ET), the potential where pit growth shifts from activation/ohmic drop control to diffusion control.

Keywords: UNS N08800, artificial one-dimensional pit, localized corrosion, thiosulfate, chloride

Ni-Cr-Fe alloys such as UNS N08800 (alloy 800) suffer pitting corrosion in chloride (Cl- ) plus thiosulfate (S2O3 2-) solutions. This occurs due to a synergistic effect between both ions in a certain range of solution concentration and electrochemical potential. Potentiodynamic tests in 1 M NaCl + 10-3 M S2O3 2- solutions evidenced thiosulfate pitting by a peak in anodic current centered near -0.15 VSCE. The maximum anodic current of this peak increased with a decrease in potential scanning rate, reflecting the autocatalytic nature of the pitting process and the increased available time for pit growth. A wire of alloy UNS N08800 was embedded in epoxy to study the kinetics of anodic dissolution using the onedimensional artificial pit electrode. Pits were grown at -0.16 VSCE, near the anodic peak observed in potentiodynamic tests, and at 0.4 VSCE, i.e. above the conventional chloride pitting potential. At -0.16 VSCE, the one-dimensional pit was under ohmic drop control. When the wire was polarized to 0.4 VSCE, the usual transitions from activation, ohmic drop and diffusion control regimes were observed. Thiosulfate increased the rate of anodic dissolution during the activation-controlled regime of pit growth and decreased the transition potential (ET), the potential where pit growth shifts from activation/ohmic drop control to diffusion control.

Keywords: UNS N08800, artificial one-dimensional pit, localized corrosion, thiosulfate, chloride

Also Purchased
Picture for 04306 Atmospheric Corrosion and Chloride
Available for download

04306 Atmospheric Corrosion and Chloride Deposition on Metal Surfaces

Product Number: 51300-04306-SG
ISBN: 04306 2004 CP
Author: Steven A. Matthes, Gordon R. Holcomb, Stephen D. Cramer, Bernard S. Covino Jr. and Sophie J. Bullard
$20.00
Picture for 03403 ELECTROCHEMICAL NOISE STUDY OF STRESS
Available for download

03403 ELECTROCHEMICAL NOISE STUDY OF STRESS CORROSION CRACKING OF SENSITIZED 304H IN THIOSULFATE

Product Number: 51300-03403-SG
ISBN: 03403 2003 CP
Author: A. Aballe, R.C. Newman, R.A. Cottis
$20.00
Picture for 02551 EFFECTS OF POTENTIALLY AGGRESSIVE SPECIES...
Available for download

02551 EFFECTS OF POTENTIALLY AGGRESSIVE SPECIES ON CORROSION OF UNS N06022 UNDER HIGHLY ACIDIC AND BASIC CONDITIONS

Product Number: 51300-02551-SG
ISBN: 02551 2002 CP
Author: A.L. Pulvirenti, K.M. Needham, M.A. Adel-Hadadi, A Barkatt, C.R. Marks, and J.A. Gorman
$20.00