Search
Filters
Close

Online Conference Paper

View as
Sort by
Display per page
Picture for Fatigue and Fracture Resistance of Different Line Pipe Grade Steels in Gaseous H2 Environment
Available for download

Fatigue and Fracture Resistance of Different Line Pipe Grade Steels in Gaseous H2 Environment

Product Number: 51324-21101-SG
Author: Milan Agnani; Chris San Marchi; Joseph Ronevich
Publication Date: 2024
$40.00
The existing natural gas (NG) pipeline network is being considered to transport pure gaseous hydrogen (GH2) or blends of NG and GH2 for domestic and industrial energy needs, in an effort to reduce global CO2 emissions. The toughness and ductility of ferritic steels are reduced in the presence of GH2. In order to assess the viability of GH2 gas distribution via NG pipeline networks, it is necessary to understand the fatigue and fracture response of the materials in the network, including the various pipeline steels. Hydrogen-assisted fatigue crack growth (FCG) and fracture behavior of five different modern line pipe grade steels (X52, X70, X80, X100, and X120) were evaluated in high-purity GH2 at pressure of 210 bar, where the tensile strength increases with grade, X120 displaying the highest strength. The X52 and X70 steels feature ferrite with small amounts of pearlite in the microstructure. The X80 steel has a combination of polygonal and acicular ferrite, whereas the X100 and X120 steels contain fine ferritic and bainitic microstructures. The different pipeline steels exhibit similar accelerated FCG rates in the presence of GH2, irrespective of the strength and microstructural constituents. A significant reduction in the fracture resistance is observed for all the steels in GH2 as compared to air, although elastic-plastic fracture (J-R) behavior is maintained in GH2. Contrary to FCG rates, hydrogen-assisted fracture is affected by the microstructure and strength of the steel; higher strength steels exhibit lower fracture resistance and lower tearing modulus, analogous to the generally expected trends in air. Selected fracture surfaces are analyzed to rationalize the influence of microstructure and strength on hydrogen-assisted fracture of this class of steels.
Picture for Fatigue And Static Crack Growth Rate Study Of X-65 Line Pipe Steel In Gas Transmission Pipeline Applications
Available for download

Fatigue And Static Crack Growth Rate Study Of X-65 Line Pipe Steel In Gas Transmission Pipeline Applications

Product Number: 51321-16721-SG
Author: Ashwini Chandra; Ramgopal Thodla; Joseph Tylczak; Margaret Ziomek-Moroz
Publication Date: 2021
$20.00
Picture for Fatigue Loading of Test Specimens with Galvanically Induced Corrosion Damage Provides New Insight to Guide Fracture Mechanics Modeling
Available for download

Fatigue Loading of Test Specimens with Galvanically Induced Corrosion Damage Provides New Insight to Guide Fracture Mechanics Modeling

Product Number: 51324-20989-SG
Author: Thomas Curtin; Sharon Mellings; Ivan Karayan; Robert Adey; Joe Indeck
Publication Date: 2024
$40.00
Airframe structural components commonly experience galvanic damage at dissimilar metal connections following deterioration of insulating sealants or breakdown in coating protection systems. Of particular concern is the often-hidden corrosion damage that occurs inside fastener holes. Aggressive electrolytes can develop in these occluded spaces leading to the formation of multiple crack initiation sites and a compromise in the structural integrity of the component. To investigate this type of damage, laboratory testing was undertaken to evaluate fatigue life in AA 7075-T651 dog-bone specimens that included side holes fitted with CFRP inserts. The CFRP insert was used to introduce galvanic damage under thin film atmospheric corrosion conditions but removed prior to actual fatigue testing. Fatigue tests were conducted under constant amplitude loading, at R-ratios of 0.05, 0.6, and 0.89, in both air and 4.5M NaCl solution. Using a three-dimensional, fatigue crack growth (FCG) program, BEASY, complex crack propagation path evolution, and transition from surface flaw to through-crack was accurately represented. By selecting appropriate crack growth kinetics, the environmental effects on fatigue life were quantitatively determined for different modeling scenarios. Fractographic images of crack initiating features (corrosion pits, constituent particle clusters) were used to guide the location and sizing of initial flaws. Fatigue crack growth kinetic data, collected in both air and NaCl solution, was used to drive crack growth simulations. Modeling scenarios included the propagation of both single dominant flaws and multiple interacting flaws; the FCG life was evaluated for each case. This modeling work provides new insight for understanding how advanced fracture mechanics modeling capability can be used to improve life prediction of corroded components.
Picture for Fe3O4, FeCO3 or FeS - Which Corrosion Product Will Prevail at High Temperature in CO2/H2S Environments?
Available for download

Fe3O4, FeCO3 or FeS - Which Corrosion Product Will Prevail at High Temperature in CO2/H2S Environments?

Product Number: 51320-14413-SG
Author: Shujun Gao, Bruce Brown, David Young, Srdjan Nesic, Marc Singer
Publication Date: 2020
$20.00
Picture for Feasibility Journey - Feasibility of Repurposing Existing Natural Gas Network to Transport Hydrogen - Natural Gas Blends at the Distribution Leve
Available for download

Feasibility Journey - Feasibility of Repurposing Existing Natural Gas Network to Transport Hydrogen - Natural Gas Blends at the Distribution Level

Product Number: 51324-20936-SG
Author: Saba N. Esmaeely; Shane Finneran; Andrew Cummings; Daan Jonas Hottentot Cederløf ; Sander Gersen
Publication Date: 2024
$40.00
Decarbonization of energy systems requires transitioning existing energy systems to use with low carbon sources. As part of such transitions, existing natural gas networks are being evaluated for compatibility with transporting hydrogen – natural gas (H2 – NG) blends, as a steppingstone to potentially transport 100% hydrogen. Utilizing the existing networks provides opportunities for time and cost-efficient transitions overcoming the high cost of, and public resistance to, building new infrastructures. A comprehensive, system-wide assessment of existing infrastructure is the first step in determining the feasibility of such transitions, from both technical and safety aspects. Such an assessment should consider the potential challenges that are generally recognized with hydrogen or hydrogen - natural gas blends and evaluate potential impacts on the materials, operational, and safety and system performance characteristics of the systems. A thorough assessment should encompass a study of the entire network including the feasibility from multiple facets in order to provide an acceptable range of H2 concentration (H2%) to be safely blended with natural gas without substantial modification to the existing infrastructure. This should include the compatibility of the material and equipment throughout the entire network with H2, considering material interaction, system integrity, process and performance, equipment accuracy and functionality, chemical compatibility, storage and handling, and customer (i.e., end-use) compatibility. The current paper portrays the steps and challenges that should be considered in the feasibility assessment of each material population, end use and equipment population at the distribution level.