Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
CO2 captured from different sources for carbon capture and storage (CCS) will contain impurities. Although it is technologically possible to treat CO2 to near 100% purity in the gas conditioning process, it is preferable to have fewer rigid specifications to reduce both operational and capital costs. From a corrosion point of view, SOx, NOx, H2S, and O2 are considered to be the most aggressive impurities.
The present study was designed to study the role of impurity adsorption and condensation behaviors in the corrosion mechanism of CO2 transport pipeline steel, based on the hypothesis that the impurity adsorption and condensation play a critical role in inducing the formation of aqueous electrolyte in the initial stage of the corrosion processes. The impurity adsorption and condensation behaviors including water adsorption, adsorption of sulfurous species (SO2/H2SO3), and H2SO3 condensation onto the Fe-coated quartz crystals were measured by the Quartz Crystal Microbalance (QCM) technique in water-unsaturated CO2/H2O flow and CO2/H2O/H2SO3/SO2 flow at 45°C and 1 bar. The connections between the water adsorption and acid condensation behavior onto Fe-coated quartz crystals with Fe corrosion were also studied by utilizing SEM and EDS techniques. The results showed that Fe suffered no corrosion in the water-unsaturated CO2/H2O gas flow but suffered localized corrosion in the water-unsaturated CO2/H2O/H2SO3/SO2 gas flow. It was suggested that the acid condensation initiated the Fe corrosion at water-unsaturated conditions with impurities instead of the pure water adsorption behavior.
Carbon capture and storage (CCS) is a promising technology that can keep the core value of fossil fuel power plants while significantly reduce CO2 emissions. Pipeline transportation is believed to be the most cost-effective and relatively safe solution in the context of CCS as it can transport large amounts of CO2 under well-controlled environments. However the transported sc-CO2 stream always contains certain amounts of corrosive impurities particularly SO2 and H2S. There is a stress corrosion cracking concern of sc-CO2 pipes because of the presence of high pressure CO2 stream and S-contained agents. Little work has been performed to address this issue. In this paper SCC investigation of pipeline steels in supercritical CO2 stream is conducted and the results are discussed. It is anticipated to support the development of CO2 pipeline standard and advance the deployment of CCS technology in a safe manner.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The aim of this work is to identify an approach to materials selection and corrosion control that can address the specific requirements of a Carbon Capture and Storage (CCS) project. This work is largely based on the accumulated knowledge and expertise that has been published. Besides the direct guidance from this document, specific topics may require more detail that can be found in the references.
The effect of CO2 concentration in the atmosphere on temperature has been known for a long time. Although an increase in CO2 concentration has been observed since the 1960s, a clear change in trend of global temperature increase can be observed from around the 1990s. CCS (Carbon Capture and Storage) is a mature technology available to reduce emissions from large scale fossil-based energy and industry sources. Sufficient geological storage is available for these sources. Mitigation of CO2 emissions via CCS has been identified as crucial to limit global warming.3 In recent years a significant increase in CCS projects have been proposed and initiated.