Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Pipeline steels higher than API X80 grade ad subject to hydrogen embrittlement risk induced by the hydrogen evolution effect under cathodic protection. This paper focuses on the hydrogen embrittlement behaviors of API X70, X80 and X90 high strength pipeline steel under cathodic protection in soil simulation conditions.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Extremely corrosive environments of today’s oil and gas exploration requires more expensive Corrosion Resistant Alloys (CRAs) to be used for equipment such as tubulars. Material selection for oil and gas wells, especially those containing high hydrogen sulfide (H2S) and carbon dioxide (CO2) partial pressure, is very crucial. Hydrogen sulfide and carbon dioxide are quite aggressive to the materials used in oil field environments. The material of choice for these oil wells has to be reliable and cost-effective. This makes the material selection process a very complex and difficult task involving both financial and safety risks analysis.
Due to the threat of Global warming, and the steady increase of the cost of energy, particularly electricity, so called "Cool Roof Coatings" or CRC’s, have received a lot of high-profile press in industry magazines due to their ability to drop surface temperature of roof structures during the summer months.
EIS is one of the techniques which is frequently used for studying electrochemical reactions on a metal surface in an aqueous environment. However, one of the main challenges in using EIS is the interpretation of results. Various interpretation methods and their associated uncertainties lead to ambiguous outcomes and often end up with a biased analysis One of the methods frequently used is the so-called “equivalent electrical circuit” method which models the response of and electrochemical system by matching it to that of a combination of “analogous” electrical circuit components, such as resistors, inductors, capacitors, etc.
This paper presents the findings of an investigation that was carried out to determine the root cause of the premature failure of Ni-coated carbon steel fittings on the water injection composite piping system installed at an oil production facility in Western Canada. The facility had been in operation since 2011 without major corrosion issues. Many of the Ni-coated fittings, which are expected to have a service life of 20 years, started to fail (developed leaks) unexpectedly after about 4 years. The core structure of composite pipe is a high-density polyethylene (HDPE) inner pipe, a middle layer of high-strength dry fiberglass, and a protective thermoplastic outer jacket. The interconnecting fittings are made of carbon steel coated with a thin, ~40 micron (1.5 mil) layer of Nickel.
There are mainly two commonly adopted criteria for controlling CP. One is the polarized potential criterion and the other one is the polarization shift criterion1. These criteria are not the true criterion for cathodic protection; they are the surrogate criteria (see below). The polarized potential criterion is to control the instant-off structure-to-electrolyte potential within a specified range. For example, the instant-off potential should be between -0.85 and -1.2 V vs Cu/CuSO4 (VCSE) for pipelines buried in soil. The polarization shift criterion is to control the polarization of a CP-protected structure to a given minimum value and this minimum value is usually 100 mV. The polarization is determined either by the difference between the corrosion potential of the structure measured before CP is applied and the instant-off structure-to-electrolyte potential, or by the difference between the depolarized potential of the structure and the instant-off structure-to-electrolyte potential.
Evaluating criteria whereby prestressed concrete structures and members can be protected from corrosion by means of cathodic protection (CP).
DOWNLOADABLE HISTORICAL DOCUMENT - Electrochemical realkalization (ER) for conventionally reinforced concrete structures. Common industry practices for the application of ER. Part II of 2. Part I (Item 24214) is on electrochemical chloride extraction.
The corrosion of reinforcing and prestressing steel in concrete structures caused by stray currents. The history of stray-current corrosion, sources, mechanisms, effects on structures, detection and mitigation.
Information and test methods available to evaluate the effectiveness of cathodic protection (CP) systems used to protect the steel reinforcement of conventionally reinforced atmospherically exposed concrete structures.
Electrical resistance (ER) corrosion measurement probes, used for internal corrosion monitoring, are now referred to as soil corrosion probes (SCP) when used in soil-side applications.
High-voltage direct current (HVDC) transmission systems and their effect on underground/underwater or surface metallic structures.