Laser Induced Surface Improvement (LISI) is a new process developed by University of Tennessee Space Institute (UTSI) which employs lasers to melt precursor coatings and portions of the substrate to form a durable corrosion resistant surface. The LISI surface can be tailored to yield a composition that provides minimum impact to the base substrate material while giving good corrosion characteristics. The LISI surface treatment of tungsten carbide was applied on 7075 and 6061 aluminum alloys. The LISI treatment uses a chromium/nickel mixture and a stainless steel type mixture (pseudo stainless steel of 18 wt% chromium, 8 wt% nickel and a trace amount of manganese and silicon) on steel
alloy 1010. The corrosion characteristics of these samples were
determined in 3.5 wt% NaCl aqueous solution using linear polarization resistance technique. Potentiodynamic scans were run to determine the corrosion rates and optical microscopy was used to examine pitting characteristics of the different surface coatings. The effectiveness of the LISI modified surfaces to protect both steel and aluminum substrates is discussed. Key Words: aluminum alloys, carbon steel, chloride solution,
chromium, corrosion, electrochemistry, LISI, lasers, marine environment, nickel, open circuit potentials, pitting, polarization resistance, potentiodynamic scans, stainless steel alloy, tungsten carbide